
Incompressible Navier-Stokes with Particles Software

Testing Plan

Applied Numerical Algorithms Group
NERSC Division

Lawrence Berkeley National Laboratory
Berkeley, CA

August 6, 2003

Contents

1 Scope 3

1.1 System Overview . 3

2 Reference Documents 4

3 Software Test Environment 5

4 Test Identification 6

4.1 General Information . 6
4.1.1 Test Level . 6
4.1.2 Test Classes . 6

4.2 Planned Tests . 6
4.2.1 Test 1 – DiscreteDeltaFn Unit Test 7
4.2.2 Test 2 – DragParticle Unit Test 7
4.2.3 Test 3 – ParticleProjector::computeD Test 7
4.2.4 Test 4 – ParticleProjector::computeInfiniteDomainBCs Test 7
4.2.5 Test 5 – ParticleProjector Test – Single Particle 7
4.2.6 Test 6 – ParticleProjector Test – Multiple Particles 8
4.2.7 Test 7a – AMRINS with particles system – Single Particle Sedimen-

tation . 8
4.2.8 Test 7b – AMRINS with particles system – Single Particle coupled

with fluid motion . 8
4.2.9 Test 8a – AMRINS with particles system – Multiple Particles Sedi-

mentation . 8
4.2.10 Test 8b – AMRINS with particles system – effective viscosity test . 8
4.2.11 Test 8c – AMRINS with particles system – Multiple particles coupled

with fluid motion . 8
4.2.12 Test 9 – AMRINS with particles system regression test 9

5 Test Schedules 10

6 Bug Tracking 11

1

7 Requirements Traceability 12

2

Chapter 1

Scope

The AMR incompressible Navier-Stokes with particles code developed for this project will
build heavily on the already-existing AMR incompressible Navier-Stokes (AMRINS) code,
which itself relies on the functionality in the Chombo software infrastructure [2], including
the ParticleTools support for particles in the Chombo library. The software test plan
outlined in this document will focus on the additional functionality developed for the
particle capability of the code; since AMRINS and Chombo have their own software test
plans, it is not necessary to provide for testing the functionality of the pre-existing code.
Note, however, that since the software developed for this project uses the AMRINS and
Chombo functionality so extensively, changes and bugs in the AMRINS and Chombo code
will tend to have effects on the current testing results. The developers for this project are
kept abreast of developments in Chombo through CVS notification (which sends e-mail
whenever a change is made in the Chombo CVS version-control repositories), and through
the ChomboUsers e-mail list.

1.1 System Overview

The software implements an AMR algorithm for solving the incompressible Navier-Stokes
equations with forcing due to drag from suspended particles. The algorithm to be used in
this work is based on the viscous algorithm presented in the “Incompressible Navier-Stokes
Software Design” document, along with the particle projection algorithm presented in the
“Incompressible Navier-Stokes with Particles Algorithm Design Document”.

3

Chapter 2

Reference Documents

In addition to the Chombo design document [2] and the algorithms described in the “In-
compressible Navier-Stokes with Particles Algorithm Design Document” [4] and the “In-
compressible Navier-Stokes Software Design” document [3] , we will also refer to the
“Software Design for Particles in Incompressible Flow” document [5].

4

Chapter 3

Software Test Environment

The AMRINS for particles software, linked to the AMRINS code and the Chombo software
libraries, will be tested. As new functionality is added and current functionality is improved,
testing will continue. It is expected that a given time, the AMRINS and particle codes
will be in sync with the current state of the Chombo libraries.

This software is primarily intended for use on UNIX/Linux-based systems. In general,
the makefiles used in both Chombo and AMRINS require GNU make (gmake). The
software itself is designed to be run from a shell, with an inputs file providing run-specific
inputs. For data output, the software uses hdf5, so the system must have hdf5-1.4.1
installed. The Chombo and AMRINS software is written in C++ and Fortran77, so working
C++ and F77 compilers must be available. We generally use the GNU compiler: both gcc
2.95 and 3.1 have been successfully used to compile this code. In addition, the Chombo
Fortran preprocessor uses PERL. If ChomboVis will be used to examine results, then it
must be installed as well. ChomboVis additionally requires Python and VTK.

We will test the AMRINS-particles/Chombo combination in a variety of environments,
with a variety of compilers. Table 3 lists the platforms and compilers we have successfully
compiled and run the AMRINS code:

Testing is done by ANAG personnel, although collaborators have been useful for finding
unintended functionality, primarily in the Chombo libraries themselves.

Platform OS C++ Compiler Fortran Compiler
CRAY T3E unicos KCC 3.3d Cray Fortran 3.5.0.4
IBM SP AIX KCC 4.0f, xlC 5.0.2.0 IBM XL Fortran 7.1.1.0

Pentium/AMD Linux gcc 2.95.3+, g77 2.95.3+, PGI Fortran 3.3-2
Intel C++ 6.0 Intel Fortran 5.0.1

Compaq OSF gcc 3.1 Compaq f77 X5.4A-1684-46B5P
Compaq Linux gcc 2.95.3 g77 2.95.3
SGI IRIX MIPS Pro CC 7.3.1.2m, gcc 2.95.3 MIPS Pro f90 7.3.1.2m

Table 3.1: Platforms and compilers on which the AMRINS code has been tested

5

Chapter 4

Test Identification

4.1 General Information

In general, the best way to test whether many components are functioning properly is to
do a convergence study. For example, for a velocity projection component, a velocity field
is initialized on a series of meshes, each a factor of 2 finer than the last. The projection
is applied to the velocity field, and then the divergence of the resulting velocity field is
computed. If the projection component is properly implemented, the divergence should
decrease at second-order rates.

4.1.1 Test Level

In general, most of the testing outlined in this document will be component testing.
System-level testing will also be carried out on the entire AMRINS with particles code.
It is expected that integration testing is not necessary at this time, because of the small
size of the design team.

4.1.2 Test Classes

In general, testing will be structured to evaluate correctness of the code. It is anticipated
that since the next phases of code development will be focused on performance enhance-
ment, that performance of the code will be monitored closely, so routine performance
testing should be unnecessary, while testing for correctness will be important as changes
are made to speed up the code.

4.2 Planned Tests

In this section, we outline the tests planned for the particle code, broken down by functional
software unit. All testing codes are written in C++.

6

4.2.1 Test 1 – DiscreteDeltaFn Unit Test

The discreteDeltaFn class implements the spreading of a point force onto the compu-
tational grid. We test this spreading function to ensure that it has been coded correctly.

4.2.2 Test 2 – DragParticle Unit Test

The specific functionality for the DragParticle class will be tested in a series of unit tests.
These unit tests will compare the functional results with the analytically computed correct
solution.

a. DragParticle::computeDragForce Test This unit test will ensure that the drag
force is computed correctly for a single particle given a prescribed velocity field.

b. DragParticle::computeK Test This unit test will ensure that the kernel K is
computed correctly for a single particle at a given location x.

c. DragParticle::computeProjForce Test This unit test will ensure that the force
fjKij is computed correctly for a single particle at a given location x.

4.2.3 Test 3 – ParticleProjector::computeD Test

Unit tests to ensure that the kernel D is being computed correctly by the ParticleProjector
class. This will be done in two ways, a test with a single particle, and a test with a group
of particles:

a. Single particle – test function result against analytic solution.

b. Multiple particles – test for 2nd-order convergence.

4.2.4 Test 4 – ParticleProjector::computeInfiniteDomainBCs

Test

Unit test to ensure that the infinite domain boundary condition outlined in Section 3 of
[4] is implemented correctly and that it approximates solutions on an infinite domain.
Perform an elliptic solve of a reference problem on an infinite domain for which there is an
analytic solution (A Gaussian, for example) using the infinite domain boundary condition
functionality in the ParticleProjector class. Solution should converge to analytic
solution at second-order rates.

4.2.5 Test 5 – ParticleProjector Test – Single Particle

Unit test to ensure that the force due to a single particle is projected correctly. Test for
convergence to analytic solution. Also, test to ensure that divergence of resulting field
converges to 0 at second-order rates.

7

4.2.6 Test 6 – ParticleProjector Test – Multiple Particles

Unit test to ensure that force due to multiple particles is projected correctly. Test that
resulting field and its divergence converge at second-order rates.

4.2.7 Test 7a – AMRINS with particles system – Single Particle

Sedimentation

In this test, a fluid system with a single suspended particle with a gravitational forcing
in zero-velocity fluid is tested. The motion of the particle should agree with accepted
sedimentation rates from the literature.

4.2.8 Test 7b – AMRINS with particles system – Single Particle

coupled with fluid motion

In this test, a fluid system with a single suspended particle is tested. The particle should
be advected along with the flow field, while exerting a drag force on the fluid. The solution
should converge at second-order in space and time.

4.2.9 Test 8a – AMRINS with particles system – Multiple Particles

Sedimentation

A fluid system with multiple particles with a gravitational forcing in a zero-velocity fluid
is validated. The motion of the particles should agree with accepted sedimentation rates.

4.2.10 Test 8b – AMRINS with particles system – effective viscosity

test

Batchelor [1] presents a solution for the effective viscosity of a dilute suspension of par-
ticles. To further validate the code, we will compute the effective viscosity of a dilute
suspension of particles using the AMRINS-particles code and compare to the solution
derived in [1].

4.2.11 Test 8c – AMRINS with particles system – Multiple particles

coupled with fluid motion

In this test, a fluid system with multiple suspended particles in a flow field is tested. The
particles should be advected along with the flow, while exerting drag forces on the fluid.
The solution should converge at second-order rates in space and time.

8

4.2.12 Test 9 – AMRINS with particles system regression test

To ensure that Chombo library changes, bug fixes, and related code changes do not cause
unintended changes in code results, an AMRINS-particles system regression test will be
employed. The AMRINS particles code will be run with a benchmark inputs file and
diagnostic quantities are reported at the end of the run. Changes in these diagnostic
quantities will indicate changes which will need to be investigated.

9

Chapter 5

Test Schedules

Once a capability in the code has been verified by the appropriate test, we plan to use
these tests as regression tests. We plan to apply the entire test suite once each month to
ensure that no unintended changes are introduced, and we also will re-run the test suite
after bugs are found and corrected to ensure that new bugs are not introduced.

The system regression test (Test 9) will be done weekly for serial runs, and monthly
for the suite of parallel runs, and also after bug fixes and library changes to lessen the
possibility of unintended changes in the code.

Also, acceptance tests will be run as stakeholders take possession of the software.

10

Chapter 6

Bug Tracking

The AMRINS particle code developers (and the Chombo developers) use the ttpro system
for bug tracking. When a bug or unexpected behavior in the code is identified, a description
is entered in the ANAG ttpro database. As the bug is investigated and fixed, the description
is updated and expanded. Once a bug has been fixed, the bug report is “closed” in ttpro,
but it remains in the database for future reference if needed. Also, after a bug fix, the
regression test (Test # 9) is re-run to ensure that no unanticipated effects have been
added.

11

Chapter 7

Requirements Traceability

The requirements traceability matrix is presented in Figure 7.1. The first column, “Alg
Spec No”, connects the entry in matrix with the relevant section of the “Incompress-
ible Navier-Stokes with Particles Design Document” algorithm design document [4]. A
parenthetical number refers to a specific equation in [4].

12

Alg Spec Req Statement S/W module Test Spec Test Case Verification Mod. Field
No. #
1 (5) Particle spreading DiscreteDeltaFn Particle 1 not

Test Plan verified
1 (2) Particle class test DragParticle: Particle 2a not

computeDragForce test plan verified
3.1 Particle class test DragParticle: Particle 2b not

computeK test plan verified
4 Particle class test DragParticle: Particle 2c not

computeProjForce test plan verified
4 – 1(a-b) Particle ParticleProjector:: Particle not

Projection computeD Test Plan 3 verified
3 Particle ParticleProjector:: Particle not

Projection computeInfiniteDomainBCs Test Plan 4 verified
3 Particle ParticleProjector:: Particle not

Projection projectForce Test Plan 5-6 verified
1 (1-2) AMRINS/ AMRINS/particle Particle not

Particle code system Test Plan 7(ab)-8(ab) verified
1 (1-2) AMRINS/ AMRINS/particle Particle not

Particle code system Test Plan 9 verified

T
ab
le
7.1:

R
eq
u
irem

en
ts

T
raceab

ility
M
atrix

13

Bibliography

[1] G. K. Batchelor. An Introduction to Fluid Dynamics, chapter 4. Cambridge University
Press, 1988.

[2] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B. Serafini,
and B. Van Straalen. Chombo Software Package for AMR Applications - Design
Document. unpublished, 2000.

[3] Applied Numerical Algorithms Group. Incompressible Navier-Stokes software design.
Technical report, NERSC Division, Lawrence Berkeley National Laboratory, 2002.

[4] Dan Martin and Phil Colella. Incompressible Navier-Stokes with particles design doc-
ument. Technical report, Applied Numerical Algorithms Group, Lawrence Berkeley
Laboratory, 2003.

[5] Dan Martin and Phil Colella. Software Design for Particles in Incompressible Flow.
Applied Numerical Algorithms Group, Lawrence Berkeley Laboratory, 2003.

14

